

Natural Resources Conservation Service

AutoCAD Civil 3D 2020 Moving Points from Surveyed Data

Dan Polite Engineering Technician <u>daniel.polite@maryland.gov</u> Cell 302-598-8227 <u>www.marylandcadusers.com</u>

Natural Resources Conservation Service **Topics Covered:**

- GPS Benchmarks in Civil 3D
- Moving points from general location to geospatial location
- Aligning the points to the photo that is preloaded in Civil 3D
- Exporting the points to the new location

You can download the GPS Benchmarks from the following location and add it to Civil 3D:

NRCS Sharepoint site:

C3D Support

Files>MD_NGS_Benchmarks.zip

Download the zipped file onto your c:drive and unzip the file

Open up your drawing in Civil 3D

Type in the command line: mapimport

Navigate to the location were you unzipped the file to and make sure the file type is set to .shp> Click **OK**

An Import window will appear:

Select Data>Another window will appear>Click "Create Object Data">Select Create object data>OK>OK

A Import - C:\Users\\MD_NGS_benchmarks.shp	×		
Current drawing coordinate system	Spatial filter	A Attribute Data	×
MD83F NAD83 Maryland State Plane Zone, US Foot	None	Do not import attribute data Oreate object data	iystem Data
Driver options	Current display	Add to database table	I MD_NGS_Delic ACA
Driver Options properties table.	tab.	Object Data	
Import properties for each layer imported:		Object Data table to use:	
Input Layer Drawing Layer Object Class Input Coordinate System	Data	MD_NGS_benchmarks	<u>~</u>
MD_NGS_benchmMD_NGS_benchmark(<none> MD83</none>	<none> = ACAI</none>	Add unique key field AdMapKey	s
Save			
Creater of the			2
Use class defaults for out of range values			
ОК	Cancel Help		Import polygons as closed polylines
			Use class defaults for out of range values
			OK Cancel Help

Now you should see a bunch of points that are located on the **MD_NGS_benchmarks** layer (shown in white)

If you select anyone of those points, you can view the properties and see the elevation and there is also a link to the website that you can copy and place in your browser to see actual photos of the benchmark

						1	+ +	
	G	ieneral						
Si No				ByLayer				
		Layer		MD_NGS_b	enchmarks			
		Linetype			- ByLayer			
筬		Linetype scale		1.0000				
		Plot style						
2		Lineweight			- ByLayer			
di in		Transparency		ByLayer				
25 -		Hyperlink						
				0.0000				
	3	D Visualization						
		Material		ByLayer				
Dat	G	eometry						
led		Position X		1640648.5	987			
ten		Position Y		722411.442	20			
ŭ,		Position Z		0.0000				
	0	D:MD NGS benchr	narks					
		Featld		9778				
ass				9778				
S 2		featureid						
i,		data_date		20121129				
2 °		data_srce		http://www	.ngs.noaa.g	ov/cg	i-bi	
		dec_long		-75.83417				
A.		dec_lat		39.64444				
No.		pid		JU4256				
				B 198				
1018		state		MD				
				CECIL				
		quad		NEWARK W	EST (1992)			
		latitude		39 38 40.				
		longitude		075 50 03.	(W)			
x27		pos_datum		NAD 83				
		datum_tag		(1986)				
(Raja) a		pos_srce		SCALED				
		elevation		38.874				E
No.		elev_datum		NAVD 88				ð
Carlos and		elev_srce		ADJUSTED				a.
2022 N		ellip_ht						-

data_date	20121129
data srce	http://www.ngs.noaa.gov/cgi-bi

This is an example of what the webpage would look like for that specific point selected

The NGS Data Sheet

See file $\underline{dsdata.pdf}$ for more information about the datasheet.

PROGRAM =	= datasheet95, VERSION = 8.12.5.14							
1	National Geodetic Survey, Retrieval Date = JULY 25, 2022							
JU4256 *								
JU4256	DESIGNATION - B 198							
JU4256	PID - JU4256							
JU4256	STATE/COUNTY- MD/CECIL							
JU4256	COUNTRY - US							
JU4256	USGS QUAD - NEWARK WEST (2016)							
JU4256	- , ,							
JU4256	*CURRENT SURVEY CONTROL							
JU4256								
JU4256*	NAD 83(1986) POSITION- 39 38 40.63 (N) 075 50 02.06 (W) HD HELD1							
JU4256*	NAVD 88 ORTHO HEIGHT - 38.874 (meters) 127.54 (feet) ADJUSTED							
JU4256								
JU4256	GEOID HEIGHT33.088 (meters) GEOID18							
JU4256	DYNAMIC HEIGHT - 38.855 (meters) 127.48 (feet) COMP							
JU4256	MODELED GRAVITY - 980,142.9 (mgal) NAVD 88							
JU4256								
JU4256	VERT ORDER - SECOND CLASS I							
] JU4256								
JU4256.1	The horizontal coordinates were determined by differentially corrected							
JU4256.H	nand held GPS observations or other comparable positioning techniques							
JU4256.a	and have an estimated accuracy of +/- 3 meters.							
JU4256.								
JU4256.1	The orthometric height was determined by differential leveling and							
JU4256.a	adjusted by the NATIONAL GEODETIC SURVEY							
JU4256.	in June 1995.							
JU4256								
JU4256.9	Significant digits in the geoid height do not necessarily reflect accuracy.							
JU4256.0	5EOID18 height accuracy estimate available <u>here</u> .							
JU4256								
JU4256.0	Click photographs - Photos may exist for this station.							
JU4256								
JU4256.1	JU4256.The dynamic height is computed by dividing the NAVD 88							
JU4256.8	JU4256.geopotential number by the normal gravity value computed on the							
JU4256.0	Geodetic Reference System of 1980 (GRS 80) ellipsoid at 45							
JU4256.0	degrees latitude (g = 980.6199 gals.).							
JU4256								
JU4256.1	The modeled gravity was interpolated from observed gravity values.							
JU4256								
JU4256;	North East Units Estimated Accuracy							
JU4256;9	SPC MD - 220,211.2 500,092.9 MT (+/- 3 meters HH1 GPS)							
JU4256								
JU4256_l	J.S. NATIONAL GRID SPATIAL ADDRESS: 185VJ2844988646(NAD 83)							
JU4256								
JU4256	SUPERSEDED SURVEY CONTROL							
JU4256								
JU4256.1	JU4256.No superseded survey control is available for this station.							
JU4256								
JU4256_I	MARKER: DD = SURVEY DISK							
JU4256_9	SEILING: 35 = SEI IN A MAT FOUNDATION OR CONCRETE SLAB OTHER THAN							

United States Department of Agriculture

Natural Resources Conservation Service GPS Benchmarks

Select the photographs hyperlink to see a photo The NGS Data Sheet (not all the points have photos)

PROGRAM = datasheet95. VERSION = 8.12.5.14 Starting Datasheet Retrieval... 1 *********** JU4256 DESIGNATION - B 198 JU4256 PID - 3U4256 JU4256 STATE/COUNTY- MD/CECIL 3U4256 COUNTRY - US JU4256 USGS QUAD - NEWARK WEST (2016) JU4256 *CURRENT SURVEY CONTROL 304256 304256 JU4256* NAD 83(1986) POSITION- 39 38 40.63 (N) 075 50 02.06 (W) HD_HELD1 JU4256* NAVD 88 ORTHO HEIGHT - 38.874 (meters) 127.54 (feet) ADJUSTED 304256 JU4256 GEOID HEIGHT GEOTD18 -33,088 (meters) 3U4256 DYNAMIC HEIGHT -127.48 (feet) COMP 38.855 (meters) JU4256 MODELED GRAVITY - 980,142.9 (mgal) NAVD 88 JU4256 JU4256 VERT ORDER - SECOND CLASS I 1 JU4256 JU4256. The horizontal coordinates were determined by differentially corrected JU4256, hand held GPS observations or other comparable positioning techniques JU4256.and have an estimated accuracy of +/- 3 meters. 3U4256. JU4256. The orthometric height was determined by differential leveling and JU4256.adjusted by the NATIONAL GEODETIC SURVEY JU4256.in June 1995. JU4256 JU4256.Significant digits in the geoid height do not necessarily reflect accuracy. JU4256.GEOID18 height accuracy estimate available here. 3U4256 104256.0 ick photographs - P otos may exist for this station. JU4256 JU4256. The dynamic height is computed by dividing the NAVD 88 JU4256.geopotential number by the normal gravity value computed on the JU4256.Geodetic Reference System of 1980 (GRS 80) ellipsoid at 45 JU4256.degrees latitude (g = 980.6199 gals.). JU4256 JU4256. The modeled gravity was interpolated from observed gravity values. 3U4256 North East Units Estimated Accuracy 304256: JU4256:SPC MD - 220,211.2 500,092.9 MT (+/- 3 meters HH1 GPS) JU4256 JU4256 U.S. NATIONAL GRID SPATIAL ADDRESS: 185VJ2844988646(NAD 83) 304256 SUPERSEDED SURVEY CONTROL 304256 1114256 JU4256.No superseded survey control is available for this station. 304256 JU4256 MARKER: DD = SURVEY DISK

JU4256_SETTING: 35 = SET IN A MAT FOUNDATION OR CONCRETE SLAB OTHER THAN

B 198, JU4256, 2, 20130204

If you surveyed a site using 5000 (Northing) and 10000 (Easting) you will not be able to have the map behind your survey because the survey was not completed using a specific datum. This will explain the process on how to adjust your surveyed point data to match with the map shown in Civil 3D.

Natural Resources Conservation Service

Surveyed data points adjustment

The first step is to make sure that you create a copy of your original survey

Local_Survey_Points_org.txt - Notepad

File Edit Format View Help

2,5000.0000,10000.0000,345.6240,IP 3,4923.0870,9905.7300,343.7550, IP-HB2 4,4926.5580,9917.5150,343.7890, IP-HB4 100,5021.0360,10015.7300,346.2600,ER 101,5064.9860,10003.8240,348.7580,ER 102,5056.6180,9984.0840,348.5790,ER 103,5033.6170,9957.0180,348.1920,ER 104,5005.4850,9926.0120,348.1260,ER 105,5084.6390,9881.0150,351.2320,BLDC 106,5071.0440,9849.0680,348.7160,BLDC 107,5043.1660,9849.5050,351.2330,BLDC 108,5032.9110,9846.4610,352.0220,GS 109,5011.6360,9859.5880,349.1800,GS 110,4993.8250,9853.1690,346.6740,ER 111,4974.1720,9846.6620,345.6980,ER 112,4950.4210,9852.8520,345.1500,ER 113,4929.6030,9805.1570,342.6930,ER 114,4959.1020,9798.4800,342.4510,ER 115,4965.5440,9760.4130,340.0180,ER 116,4966.2110,9736.3650,339.6220,CONC 117,4935.0750,9702.6970,337.2690,CONC 110 AODE A170 0701 7AC0 007 00E0 COMO

You can just add _org at the end of the file name

The next step is to locate a point that you can move from your surveyed points to a location shown on the map in Civil 3D. This can be a building corner, edge of road, or anything that you can see on the aerial map and have a surveyed point of. It is recommended that if you are going to adjust your survey points, make sure that you survey multiple building corners or any other structures that may show on the aerial map.

On this survey multiple building corners, corner of concrete and edge of road were shot as a reference

Once you determine a shot that you can "match" to the aerial, draw a polyline from the surveyed point (make sure End Point Object Snap is on, this ensures that the polyline you draw will use the same elevation as the surveyed point elevation) to the aerial map point.

Another option is to type in the command line: **osnapz** and change it to <1>. This will not allow the object to change elevation when being moved.

This is the corner of the building that will be used in adjusting the original survey points to

As shown in the properties, the polyline has an elevation of 353.84

The polyline must be drawn to a location on the aerial map in Civil 3D

Once you created the polyline, you can now select all your points and any other linework that you may have completed and type in the command line <move>, select the endpoint of the polyline, move the mouse along the entire length of the polyline until you reach the end of the polyline that is on the aerial map.

isplacement] <Displacement>: endp of

X Specify base point or [Displacement] <Displacement>: endp of

Verify that the point elevation remained the same as the original point elevation (In this example, 353.84 was the original elevation)

Now the points have been adjusted to the aerial map. If the original survey was not completed with North facing up, you will need to rotate the points to align with North. In this example, the building was used to rotate the points.

PLEASE KEEP IN MIND THAT THIS METHOD IS ONLY TO ASSIST YOU IN HAVING THE AERIAL MAP IN THE BACKGROUND

Since the points have been moved, you MUST UPDATE the points to the new location and then EXPORT them as a new point file.

Original Point file

Local_Survey_Points_orgHeader.txt - Notepad

File Edit	Format View Help			
Point Nu	umber Northing	g Easting	Elevation	Full Description
2	5000.0000	10000.0000	345.624 IP	
3	4923.0870	9905.7300	343.755 IP-HB2	
4	4926.5580	9917.5150	343.789 IP-HB4	
100	5021.0360	10015.7300	346.260 ER	
101	5064.9860	10003.8240	348.758 ER	
102	5056.6180	9984.0840	348.579 ER	
103	5033.6170	9957.0180	348.192 ER	
104	5005.4850	9926.0120	348.126 ER	
105	5084.6390	9881.0150	351.232 BLDC	
106	5071.0440	9849.0680	348.716 BLDC	
107	5043.1660	9849.5050	351.233 BLDC	
108	5032.9110	9846.4610	352.022 GS	
109	5011.6360	9859.5880	349.180 GS	
110	4993.8250	9853.1690	346.674 ER	
111	4974.1720	9846.6620	345.698 ER	
112	4950.4210	9852.8520	345.150 ER	
113	4929.6030	9805.1570	342.693 ER	
114	4959.1020	9798.4800	342.451 ER	
115	4965.5440	9760.4130	340.018 ER	
116	4966.2110	9736.3650	339.622 CONC	
117	4935.0750	9702.6970	337.269 CONC	
118	4925.4170	9701.7460	337.305 CONC	
119	4925.8060	9720.0780	337.276 ER	
120	4917.3260	9735.5220	337.413 ER	
121	4919.0780	9768.6160	340.242 ER	
122	4925.2860	9797.4430	342.228 ER	
123	4943.5520	9833.0350	344.572 GS	
124	4954.4710	9834.2750	344.934 GS	
125	4965.9710	9834.5650	345.214 GS	
126	4965.9880	9836.2850	345.055 GS	
127	4957.2380	9836.4170	344.844 GS	
128	4946.5310	9835.5760	344.637 GS	
129	4955.2490	9865.7210	345.226 ER	
130	4947.3130	9898.9830	344.634 ER	
131	4967.6640	9907.5100	345.577 ER	
132	4972 5600	9901 8670	345 751 FR	

Adjusted Point file

PointsMovedExampleHeader.txt - Notepad

File	Edit	Format	View	Help					
Poin	tΝ	umber	Nort	thing	Easting	Elevatio	on	Full	Description
2		744711.	.7154	1618425.	.2010	345.624	IP		
3		744616.	.6400	1618501.	.1162	343.755	IP-HB2		
4		744628.	.4609	1618497.	.7696	343.789	IP-HB4		
100		744727.	.6662	1618404.	.3320	346.260	ER		
101		744716.	.2241	1618360.	2590	348.758	ER		
102		744696.	. 3970	1618368.	.4184	348.579	ER		
103		744669.	.0901	1618391.	.1329	348.192	ER		
104		744637.	.7893	1618418.	.9365	348.126	ER		
105		744593.	.6290	1618339.	. 3127	351.232	BLDC		
106		744561.	. 5405	1618352.	. 5702	348.716	BLDC		
107		744561.	.6837	1618380.	4513	351.233	BLDC		
108		744558.	5318	1618390.	.6736	352.022	GS		
109		744571.	.4338	1618412.	.0858	349.180	GS		
110		744564.	.8274	1618429.	8282	346.674	ER		
111		744558.	.1137	1618449.	4115	345.698	ER		
112		744564.	.0530	1618473.	2264	345.150	ER		
113		744516.	.1412	1618493.	5406	342.693	ER		
114		744509.	.7755	1618463.	9728	342.451	ER		
115		744471.	.7785	1618457.	1300	340.018	ER		
116		744447.	.7389	1618456.	2096	339.622	CONC		
117		744413.	.7446	1618486.	9890	337.269	CONC		
118		744412.	.6919	1618496.	6364	337.305	CONC		
119		744431.	.0269	1618496.	.4407	337.276	ER		
120		744446.	. 3807	1618505.	.0830	337.413	ER		
121		744479.	.4913	1618503.	6799	340.242	ER		
122		744508.	. 3822	1618497.	7760	342.228	ER		
123		744544.	.1647	1618479.	8862	344.572	GS		
124		744545.	5197	1618468.	9808	344.934	GS		
125		744545.	.9309	1618457.	.4845	345.214	GS		
126		744547.	.6510	1618457.	.4857	345.055	GS		
127		744547.	6908	1618466.	2366	344.844	GS		
128		744546.	.7370	1618476.	.9341	344.637	GS		
129		744576.	.9722	1618468.	5343	345.226	ER		
130		744610.	.1487	1618476.	8204	344.634	ER		
131		744618.	.8897	1618456.	5604	345.577	ER		
132		744613.	.2986	1618451	6052	345.751	ER		

I would recommend creating a new drawing and importing the points that you just exported to verify that they are in the correct location

MAKE SURE THAT YOU NOTE ON THE DRAWING THAT THE POINTS WERE SURVEYED LOCALLY AND ADJUSTED TO THE DATUM USED, IN THIS EXAMPLE IT WOULD BE NAD83

Natural Resources Conservation Service

Things to Know

- If you have a question ASK!
- There are always multiple ways to do the same thing use the one(s) that work best for you
- Keep in mind the goal of what you are using AutoCAD/Civil 3D for
- Use help sources
- This program can be as simple or as complicated as you would like it to be
- Spend time using the program and, whenever possible, with other people who use the program

Natural Resources Conservation Service

Questions?

